четвер, 5 серпня 2021 р.

Электрогенераторы и постоянные магниты

Вы когда-нибудь держали в руках неодимовые магниты? Тогда представляете с какой неимоверной силой они притягиваются и отталкиваются друг от друга. Ну и естественно, наш пытливый ум начинает искать способы использования этой силищи. Каких только не придумано механизмов и конструкций, двигателей и альтернаторов.

В процессе творческого пути изобретатели сталкивались порой с новыми необычными эффектами и открытиями. Что бы вы понимали масштабность этой темы мы предлагаем краткий экскурс по наиболее нашумевшим проектам.
Введите описание картинки
Следующий пример конструкции магнитного мотора, который в 2010 году был показан на Всемирной Выставке в Шанхае, и его видели около 70 миллионов человек, это изобретение Ванга (Wang). Проект развивался более 40 лет.
На фото рис. 113 показано устройство небольшой мощности с вращающимся ротором, и ротор отдельно. Автор на фото показан еще «в молодости», он держит в руках мотор мощностью 1 кВт. Внутри мотора применяется феррофлюид, то есть магнитная жидкость.
Проект другого мотора на магнитах, был нам известен как «планируемый к продажам на рынке мотор ПЕРЕНЕДЕВ», серийное производство которого планировалось в Европе. Патент получен WO/2006/045333 04.05.2006, хотя его схема очень напоминает бразильский патент BR 8900294 (A), автор которого Malafaia Mauro Caldeira. Отметим, что бразильский патент был выдан после того, как автор Калдейра предоставил рабочий образец в патентный офис. Автор Майк Бреди (Mike Brady) широко рекламировал возможности его мотора PERENDEV, но за много лет мы не нашли позитивных откликов от покупателей. В 2009 мы пытались организовать визит к нему для проверки и покупки моторов мощностью 100 кВт. Однако демонстрация мотора под нагрузкой, так сказать «товар в действии», раз за разом откладывалась. Новости 2010 года прибавили пессимизма: Майкл Бреди был отправлен в Германию на суд, так как он не обеспечил поставки оплаченного товара, и его клиенты были «разочарованы». Патент Майкла Бреди WO2006045333A1 и схема его мотора известны. Магниты статора и ротора расположены под углом, в положении взаимного отталкивания. Многие попытки разных энтузиастов данного направления конструирования повторить конструкцию ПЕРЕНДЕВ были успешны, но надо отметить, что серийное производство так и не началось.
Поэтому мы можем предположить, что версия «чисто магнитного мотора» в исполнении фирмы ПЕРЕНДЕВ была не совсем удачной. 16 машин небольшой мощности (5–6 кВт), проданных в Европе для бета-тестирования, имели недостатки в эксплуатации (магниты размагничивались). Поэтому мощные машины 100 кВт и 300 кВт планировались к производству с использованием электромагнитов. Поведение Майкла Бреди по отношению к заказчикам было явно некорректным. Вместо организации широкой демонстрации своих изобретений, он предпочитал работать в скрытной манере, хотя заявки в публикациях давал многообещающие. В таких случаях, происходит спекуляция на повышенном спросе. Инвесторы и покупатели таких машин, учитывая возможность хорошо заработать при выводе нового продукта на рынок, готовы поверить и платить аванс. Я полагаю, что нормальный путь развития новых технологий идет через академическую среду, то есть при организации открытых демонстраций технологии, экспертной проверке и нормальном техническом сопровождении продаваемой продукции (гарантии возврата денег, гарантии по техобслуживанию), все сертификаты, включая электро– и пожаробезопасность, а также медицинские сертификаты. Согласитесь, что покупать такую продукцию, даже если она работает, может быть опасно по причине возможных неизвестных медико-биологических эффектов. Магнитные моторы, например, создают низкочастотные электромагнитные поля, которые трудно экранировать.
Введите описание картинки
Рассмотрим пример нормального пути развития аналогичной технологии. Для этого, перейдем к более известной в 2010 году конструкции – мотору фирмы Steorn. Заявленная мощность в прототипе мотора и генератора Стеорн (Steorn) не превышает несколько ватт. Компания Стеорн работает в Ирландии, уровень специалистов в ней очень серьезный, академический. Используется дорогостоящее оборудование для измерений параметров работы их экспериментальных устройств. За 6 лет работы в компанию привлекли 8 миллионов Евро инвестиций. На продаже лицензий, то есть «ноу-хау», они уже заработали более 4,5 миллионов Евро. Необходимо отметить, что тема изучается «со всех сторон», и, первоначально планировали создать прототип мотора на постоянных магнитах. Схема очень похожа на вариант ПЕРЕНДЕВ. Сегодня фирма Steorn демонстрируют прототип с аккумулятором, тороидальными катушками и импульсным питанием, причем аккумулятор постоянно подзаряжается в ходе работы генератора. Компания серьезно подошла к изучению проблемы: на первом этапе, убедительно показала экспертам, что взаимодействие магнитов, при наличии частичного экранирования, может давать превышение мощности на выходе над потребляемой мощностью. Эксперты записывались в очередь, чтобы иметь возможность посетить лабораторию (более 300 визитов в год). Версия «чисто магнитного мотора» ОРБО не получила развития. Версия мотора-генератора Steorn 2010 года - на оси установлены два ротора. Нижний ротор с магнитами выполняет функции мотора, причем катушки статора в нем имеют вид тороидальных катушек. Верхний ротор с магнитами и катушки в статоре являются обычным электрогенератором.
В демонстрационной версии, авторами из компании Steorn показано, что работу мотора – генератора обеспечивает один небольшой аккумулятор, причем, после разгона и достижения номинальных оборотов, ток идет не из аккумулятора, а на заряд аккумулятора. Расход меньше, чем генерируемая мощность. В качестве перспективной технологии, компания Steorn разрабатывает генератор на аналогичных принципах, но без вращения. В нем, тороидальный сердечник, периодические меняющий магнитное состояние до уровня насыщения, обуславливает изменение магнитного потока в области генераторной катушки, что создает электродвижущую силу и мощность в нагрузке.
Введите описание картинки
Известна компания в Австралии, которая много лет развивает похожий магнитный мотор ЛЮТЕК (LUTEC). Эффективность генераторов ЛЮТЕК более 400 %, они способны работать в автономном режиме. Разработка фирмы «LUTEC» хорошо защищена патентами, и уже проданы лицензии почти во всем страны мира, начата подготовка к серийному производству автономных источников электроэнергии. Первичный запуск, как и в схеме Адамса, требует наличия аккумуляторов. В процессе работы, аккумуляторы подзаряжаются.
Моторы-генераторы Джозефа Ньюмана, США (Joseph W. Newman), один из его патентов был получен в ЮАР, South African Patent Application # 831,296, в нем достаточно ясно показан принцип генерации энергии.
Введите описание картинки
На первый взгляд, в конструкции Ньюана и Бедини применяется все та же пара: магнит и катушка, а они ничем не отличается от первых «игрушек» Майкла Фарадея. Кстати, он так и сказал на первой демонстрации его электромотора в Королевской Академии Наук Великобритании. В ответ на вопрос: «Какое применение найдет это изобретение?» Майкл Фарадей ответил: «Не уверен, наверное, в каких-либо игрушках». С этих игрушек и началась эпоха электромоторов.
Итак, в чем отличие моторов Ньюмана от других похожих конструкций? Обычно, у Ньюмана на катушке две обмотки: выше и ниже оси вращения. Одна из катушек выполняет роль привода ротора, вторая катушка является генераторной обмоткой. Один из вариантов такой конструкции и большой мотор-генератор Ньюмана имеет диаметр более метра. Ньюман в своих книгах указывает на то, что для успешной работы его мотора необходим особый режим, а катушки мотора и генератора должны содержать много витков. Можно допустить, что причиной эффективной работы такого генератора может быть эффект задержки реакции индуцированного поля на движение ротора, который мы ранее рассматривали (задержка перемагничивания). Без этого нюанса ротор должен тормозиться полем индуцированного тока и высокой эффективности не будет. Результаты Ньюмана достаточно убедительны, например, в 2004 его мотор показал непрерывную работу под нагрузкой, обеспечивая мощность 10 кВт в течении 8 часов.
Другой известный генератор с магнитами, известен как генератор Эклина-Брауна. Джон Эклин (John W. Ecklin) описал свою схему в патенте США № 3,879,622.
Введите описание картинки
В первоначальном варианте, генератор Эклина производит механическую работу при периодическом экранировании силы отталкивания магнитов. Известны работы Калинина и Идельбаева, по созданию конструкции автономного источника энергии с постоянными магнитами и движущимся или вращающимся экранирующим «шунтом». В других конструкциях, аналогичный метод применяют для создания электродвижущей силы, получения тока и мощности в полезной нагрузке. Основная особенность генератора Эклина-Брауна в том, что конструктивно удается уменьшить мощность привода, требуемую для вращения оси. Обычно, привод должен преодолеть точку максимального притяжения магнита и ротора. В генераторе Эклина-Брауна применяются два экранирующих элемента, справа и слева на оси. Они повернуты относительно друг друга на 90 градусов, и когда одна пластина входит в зазор между магнитами, другая пластина выходит из зазора. Это устраняет проблему торможения ротора в точке максимального сближения магнита и пластины.
Введите описание картинки
Развитие этой идеи на новом уровне происходит в работах Даниеля Куалле (Dan Qualle). В данной схеме, включение электрической нагрузки в цепь генераторной катушки, почти не оказывает влияния на первичный привод, и ток потребления привода не растет. Из схемы прохождения магнитных потоков понятна особенность индуцирования тока в генераторных катушках: ротор периодически меняет условия суммирования магнитных полей от магнитов статора, которые расположены навстречу друг другу одинаковыми полюсами. Таким образом, входя в зазор между магнитом и полюсом катушки, ротор не увеличивает поток магнитной индукции в области катушки, и ее магнитное поле индуцированного тока не тормозит ротор. Индукционный эффект организован таким образом, чтобы не мешать созданию изменений поля. Например, «шунт» входит в зазор слева от катушки, в ней увеличивается поток магнитной индукции от правого магнита, и, соответственно, в ответ на это изменение создается индукционный ток. В другой фазе вращения, «шунт» входит в зазор справа от катушки, поле левого магнита проникает в сердечник катушки, она реагирует соответственно.
Введите описание картинки
Вариант реализации генератора по схеме Куалле, который был изготовлен и проверен в 2010 году, в Санкт-Петербурге, ЗАО «Резонанс». Привод (электромотор) на фото не показан. Кольцевые магниты расположены одинаковыми полюсами друг к другу. При испытаниях было доказано, что нагрузка (ток в цепи генераторной катушки) незначительно влияет на скорость вращения ротора.
Дан Куалле, и другие авторы, называют такие разработки «no-Lentz effect» то есть «генератор без эффекта Ленца». Правило Ленца, которое мы знаем, как закон индукции Фарадея, действительно, можно конструктивно обойти, чтобы получить возможность вращения ротора генератора под нагрузкой без торможения. Более того, в ряде конструкций предлагается получать ускорение ротора полем индуцированного тока. Такие задачи решаются различными методами.
Данная тема активно развивается, например, в США известен автор – разработчик Алан Франкуер (Alan Francouer), и его генератор «The Interference disk electric generator». Слово «интерференция», в данном случае, означает «прерывание». Первый генератор такого рода, работающий автономно, Аллан построил еще в 2001 году.
Введите описание картинки
Отметим, что его «шунт» цельнометаллический, поэтому мы имеем различие в концепции схемы и принципах работы данной машины. Катушки в генераторе Франкуера расположены между двумя «звездочками», которые шунтируют магнитный поток постоянных магнитов. Аллан предлагает 10-лучевые «звездочки» и 12 магнитов, причем левый и правый шунт, как и в схеме Эклина-Брауна, сдвинуты по фазе. Тем самым, обеспечивается плавное вращение ротора, без торможения в месте максимального сближения с полюсом магнита. Подробнее, о работах Франкуера, можно прочитать в журнале «Новая Энергетика» или в Интернет.
Рассмотрим еще одно интересное изобретение, в данном случае, японское. Патент США № 5,594,289, 14 января 1997 года, автор Кохей Минато, Япония. На роторе закреплено множество постоянных магнитов, расположенных одинаковыми полюсами в направлении вращения ротора.
Введите описание картинки
Каждый из закрепленных на роторе постоянных магнитов расположен под углом относительно радиального направления ротора. Возле внешней окружности ротора, вплотную к нему, расположены электромагниты, в которых, периодически создается мощный импульс поля. Внедрение этого изобретения уже приносит автору и его партнерам большую прибыль, так как они начали производство вентиляторов, потребляющих в три раза меньше энергии, чем обычные вентиляторы той же производительности потока воздуха.
Фото вентилятора с приводом по схеме
Введите описание картинки
Интересно отметить, что были попытки организовать сделку по приобретению данной технологии и развитию производства в России. В 2006 были проведены переговоры, уже готовились документы для поездки в Японию для демонстрации технологии, но Минато и его компаньоны выдвинули условия по приобретению у них большой партии обычных вентиляторов. Кроме того, они отметили, что технология привода «повышенной эффективности» относится к «стратегическим интересам страны», и продаваться не будет. В общем, переговоры отложили на неопределенное время.
По принципу действия схемы магнитного мотора автора Кохей Минато, можно добавить, что в ней избыточная энергия (автор заявлял 300 %) обусловлена сочетанием геометрии магнитов ротора и эффекта импульсного «ударного» взаимодействия, которое мы отмечали во многих конструкциях. Очевидно, что и в этом случае, мы имеем дело с передачей взаимодействия через эфир, поскольку магнитное поле может рассматриваться, как потоки эфирной среды. Избыточная энергия обусловлена изменениями энергии среды. При «медленном» нарастании «толкающего» импульса, эффективность работы снижается до 100 % и менее.
Введите описание картинки
В таком случае, простая конструкция с коленвалом и поршнем, на котором укреплен магнит, тоже имеет перспективы развития и получения автономного режима. В случае мощного импульса тока, поле электромагнита отталкивает магнит, закрепленный на «поршне» с силой, которая зависит от величины магнитных полей тока и магнита. Затраты тока первичного источника будут минимальны при малой длительности импульса. Источником избыточной энергии, как и в случае с мотором Кохей Минато, является эфирная среда, поскольку взаимодействие передается через среду.
Рассмотрим другое изобретение, которое нашло свое применение, и есть надежда его внедрения. Речь идет о магнитном моторе Флина (Flynn), подробнее на сайте www.flynnresearch.net
Суть принципа переключения магнитного потока по методу Флина показана на рисунке. Подавая сигнал управления на катушки, магнитный поток от постоянных магнитов переключается из одной ветки магнитопровода в другую, что производит полезную механическую работу в моторе.
Введите описание картинки
Принцип «параллельных путей потока»
На левом рисунке показана ситуация, когда тока в обмотке нет. Оба подвижных элемента слева и справа притягиваются одинаково, с силой, условно равной единице. На правом рисунке показана ситуация, при наличии тока в обмотке. В левой части конструкции, поле тока обмотки и поле постоянного магнита складываются, притягивая подвижный элемент с силой, условно равной четырем. В правой части конструкции, подвижный элемент не испытывает силового воздействия. При изменении направления тока, ситуация для левого и правого подвижного элемента, соответственно, меняется. Авторы утверждают, что эффективность их моторов, работающих по такой схеме, вдвое выше, чем у обычных моторов (вентильных приводов). Компания FlynnResearch имеет контракты от многих заказчиков на моторы повышенной эффективности, мощностью от 5 ватт до 10 кВт, в том числе от военных заказчиков. Технология «параллельных магнитных путей», предложенная Флином, развивается другими исследователями. Например, автор Хильденбанд (Jack Hilden-Brand) построил мотор по схеме Флина. Мощность на входе не более 180 ватт, мощность на выходе – около 380 ватт. Серьезные планы по внедрению магнитных моторов на транспорте, для автомобилей, в первую очередь, имеют американская компания Millennial Motors, Inc., и австралийская фирма Cycclone Inc., которая еще в 2003 году поставила магнитный мотор на автомобиль и показала его в действии телерепортерам. Характерно, что после этого уровня проекта, его развитие идет почти незаметно для публики и новых сообщений нет.
Введите описание картинки
Необходимо отметить, что существуют и российские разработки в данной области, например, группа под руководством Георгия Михайловича Корнилова, Ростов-на-Дону, разрабатывает высокоэффективный мотор с магнитами и переключением потока. По данным 2011 года, при 1200 ватт на входе, мощность на валу мотора достигает 3 кВт.
Создан прототип мощностью 5 кВт, и планируются конструкторские работы по созданию мотора мощность 100 кВт. Об эффективности таких моторов можно говорить после их испытаний, хотя авторы планируют получать механической мощности на валу в несколько раз больше мощности, затрачиваемой в цепях управления. Такие моторы, в сочетании с обычными электрогенераторами, смогут стать основой автономных электростанций.
Введите описание картинки
Американские эксперименты в области линейного магнитного ускорения, примерно с 1997 года, проводит Грег Ватсон (Greg Watson), устройства с шариком называются SMOT. В продаже есть наборы для экспериментов, включая «большую железную дорогу» размером с комнату, по «рельсам» которой двигается шарик, поднимаясь и опускаясь от цикла к циклу. Ускорение шарика подбирается таким, чтобы ему хватало энергии пройти «одну ступень» и попасть в точку старта следующей ступени. Эксперимент интересный, но непрактичный. Градиент магнитного поля при минимальных расстояниях (зазоре между магнитом и ускоряемым телом), дает намного больше мощности и перспектив коммерциализации. Известный пример такой схемы – мотор Текко (Kure Tekkosho Co. «Permanent Magnet Prime Mover», патент Японии № 55144783)
Впервые, данная схема появилась в журнале Popular Science 1979 год. В роторе имеется постоянный магнит, а расстояние от полюса магнита до статора меняется. Магниты ротора и статора отталкиваются. В роторе используется мощный кобальтовый магнит, а в статоре – менее мощные неэлектропроводящие ферритовые магниты. Видимо, это уменьшает потери на индукционные токи Фуко в статоре. Этот принцип называется «магнитный градиент». За счет данного градиента, на участке движения ротора с ускорением, при изменении расстояния от полюса ротора до магнитов статора, создается крутящий момент, без затрат от внешнего источника энергии. В точке минимального зазора в статоре расположен электромагнит, который в импульсном режиме помогает ротору пройти «мертвую точку», и снова начать цикл ускорения.
Конструктивные особенности, а именно, масса ротора, сила магнита, импульсное управление электромагнитом и другие нюансы очень важны при конструировании. Например, малая масса ротора не позволит в полной мере накопить кинетическую энергию, создаваемую при ускорении ротора в градиентном магнитном поле. Ротор должен иметь свойства маховика. История изобретения интересна тем, что автор не мог найти поддержку в своей стране, и поехал в США. Его патент и демонстрации мотора в действии привлекли внимание. После некоторых событий, автор был возвращен в Японию.
Другой ротор с градиентом, известный как магнитный мотор Соукупа (George Soukup) Германия, или V-gate в США, (Calloway V-gate) представлен многими авторами в различных вариантах конструкции.
Введите описание картинки
На фото ротор немецкого изобретателя Соукупа. В роли нагрузки, автор использовал винт пропеллера. Статор представляет собой несколько магнитов, соединенных последовательно в столбик. В конструкции Соукупа, статор имеет несколько «столбиков» магнитов.
Конструкция похожего мотора с градиентом по схеме V-gate (V-ворота), с одним «магнитом – статором», который является не совсем обычным статором.
Введите описание картинки
Отметим, что Г-образная перекладина, на которой сверху установлен магнит статора, может двигаться вдоль вертикальной направляющей оси, и делает это каждый раз, при прохождении ротором «мертвой точки». Белая деталь в форме полумесяца, закрепленная на оси в нужном положении, при прохождении «мертвой точки», поднимает перекладину с магнитом статора, а затем вновь начинается цикл ускорения за счет градиента магнитного поля. На прозрачном диске установлены резиновые шайбы, выполняющие роль амортизаторов. После цикла ускорения, ротору необходимо сохранить набранную кинетическую энергию, а для этого надо пройти «мертвую точку» без потерь. Это возможно при изменении линейной траектории, путем сдвига вдоль оси вращения. Данный тип моторов весьма капризен в настройке.
Введите описание картинки
Прекрасный пример простой и работоспособной конструкции – мотор Вальтера Торбай, запатентованный в Аргентине, №P040103029, Walter Torbay, 2004 год. Автор сделал модель из дерева, магниты маломощные.
На рисунке показаны основные узлы его мотора. Детально конструкция описана в патенте. Отметим, что магниты статора, по-очереди циклично поднимаются и опускаются, позволяя ротору проходить точки максимального сближения без торможения. Напоминает работу мотора V-gate и мотора Соукупа.
Градиент, в сочетании с экранированием, встречается во многих конструкциях.
Магнитный мотор с экранированием части цикла.
Введите описание картинки
В данной схеме, магнит статора скрыт от приближающегося магнита ротора железным экраном. Расстояние между магнитом ротора и железным элементом статора меняется, как и в конструкции Кюре Текко.
Притяжение – результат градиента силы между магнитом ротора и железным статором, который также выполняет роль экрана. Этот градиент создает крутящий момент. После прохождения «мертвой точки», магниты отталкиваются, и цикл повторяется. Данных о практической реализации не имеется.
Другое известное изобретение из области магнитных моторов, описано в патенте Говарда Джонсона (Howard Johnson) Патент США № 4,151,431, выдан в 1979 году.
Введите описание картинки
Суть изобретения Джонсона состоит в особой изогнутой форме магнита, который, при определенных условиях, получает постоянный однонаправленный импульс тяги, находясь рядом с магнитами статора. Важно отметить: для ускорения нужен градиент, поэтому зазор между магнитами статора не постоянный, он меняется. В данной концепции, магнит на тележке проходит внутри стационарных магнитов с ускорением, причем этот цикл можно замкнуть. Пресса рекламировала его разработки, были известны проекты 1980-х годов по созданию прототипа мощностью 5 кВт, однако, производственные планы в США по выпуску генераторов Джонсона не были реализованы.
Обычно магнитный материал заготовки, на заводе, помещают в линейное поле мощного соленоида, поэтому, независимо от формы заготовки, ее намагниченность получается линейной. Изогнутые магниты в моторе Джонсона должны иметь угол наклона линий магнитного поля, по отношению к оси магнита. Для выполнения данного условия, целесообразно намагничивать их под соответствующим углом. Это требует изготовления нестандартной оснастки для изготовления постоянных магнитов. Отметим также еще раз, градиент поля в статоре (зазор между магнитами статора меняется).
Из современных известных проектов, стоит отметить мотор Троя Рида (Troy Reed). Патент WO 9010337 (A1)
Введите описание картинки
Магниты ротора и магниты статора отталкиваются друг от друга, создавая вращение коленвала. Автор объяснял, что в его конструкции магниты взаимодействуют таким образом, чтобы не создавать «мертвых точек». Вал мотора легко вращается рукой, без «залипания». Более подробно, принцип работы его генераторов не известен. Работали они хорошо, и даже нашли практическое применение. В 1994–1995 Трой Рид демонстрировал автомобиль, который приводился в движение его магнитным мотором.
Введите описание картинки
Очень интересное изобретение Муаммера Илдиза (Muammer Yildiz), патент WO 2009019001 (A2), было показано недавно в Университете Delft University of Technology, Нидерланды. В качестве полезной нагрузки, автор установил на ось вентилятор.
Введите описание картинки
Более мощная версия другого магнитного мотора, около 300 л.с., разработана южно-корейской компанией Shinean Corp. Схема пока неизвестна, но в конструкции есть коленвалы и постоянные магниты. Более подробно мы рассматривать конструкцию не будем, так как недостаточно информации о схеме, хотя в интернет есть убедительные видеоматериалы. Серьезный подход корейских авторов обещает интересные перспективы развития технологии.
Введите описание картинки
Вы видите, что информации по магнитным моторам очень много. Давно созрела необходимость ее осмысления и построения надежной теории для развития практических направлений, в том числе, для энергоснабжения. Известным российским автором в данной области является Михаил Федорович Остриков, Санкт-Петербург. Он работал в Военно-Космической Академии имени Можайского, в 2001 издал книгу «Общая теория единого мира». Остриков впервые (еще в 1991 году) показал особые точки в структуре магнитного поля кольцевого магнита, где оно меняет направление, и назвал их «балдж». Проводя опыты с вращением поля, а также другие эксперименты, Михаил Федорович нашел много полезных технических решений, описанных в его патентах, например «Линейный генератор электрической энергии», № 2051462. Интересные предложения Остриков делает в книге «Технические приложения новых проявления магнетизма», СПб., 1997 г. Ряд его экспериментов напоминает работы Джона Серла, но эти авторы имеют разную теоретическую основу для изучения явлений магнетизма.
Особые проявления «продольного магнетизма» нам известны по работам российского ученого Николаева Г.В., г. Томск. В его книгах подробно описана теория и эксперименты, и показаны эффекты, полезные для конструирования преобразователей энергии, использующих эти новые свойства магнитных полей.
Известным примером, играющим важную роль для популяризации магнитных моторов, является демонстрационная машина Финсруда (Reidar Finsrud), установленная в норвежском музее.
Введите описание картинки
Принцип работы. Металлический шар движется по кольцевой направляющей, ускоряясь на участке сближения с магнитом. В нужный момент, шар своим весом нажимает на рычаг, и это усилие отодвигает магнит с его пути, чтобы шар мог без торможения пройти точку максимального сближения с магнитом. Далее, шар двигается по инерции, повторяя цикл.
Введите описание картинки
Интересное изобретение, которое было реализовано на уровне 200 кВт (по сообщениям Алана Стерлинга www.peswiki.com) описано в патенте США № 5,710,731, 20 января 1998 года, автор Андрей Аболафия (Andrew Abolafia). На рисунке показана схема данной конструкции, включающая магнит и катушку. Особенность конструкции в том, что магнит помещен в центре катушки, а вокруг него вращается полусфера, сделанная из сверхпроводящего материала, чем обеспечивается изменение магнитного поля и индукционный эффект в катушке. В общем, принцип такой же, как в любом альтернаторе, но используется сверхпроводящий «шунт» полусферической формы. Предлагаемый метод намного лучше, так как почти нет затрат на создание изменений магнитного поля».
Отметим, что в интернет можно найти много рекламных предложений по продаже схем – чертежей магнитных генераторов, которые, якобы, «смогут обеспечить Ваш дом независимым энергоснабжением». Предложения заманчивые, но приобретение схем не гарантирует успешную работу экспериментальной конструкции, которую Вы сами сможете собрать. Я смотрел эти проекты, они требуют наличия опыта и «домашней лаборатории». В целом, магнитные моторы, по сравнению с другими конструкциями генераторов свободной энергии, уже нельзя назвать оптимальным решением.
Во-первых, некоторые из них, при работе создают низкочастотное магнитное поле, которое почти не экранируется.
Во-вторых, все роторные конструкции уступают «неподвижным» преобразователям энергии по многим потребительским качествам.
В-третьих, длительная экспериментальная работа с сильными магнитами приводит к изменениям в составе крови, и повышенному давлению.
Ну и самое главное – если энергия снимается напрямую с силы взаимодействия постоянных магнитов, то они просто размагничиваются, обязательно должна быть изюминка в виде импульсного или ударного воздействия и др. Есть ещё один важный политический аспект - 95% поставок редкоземельных материалов контролируется КНР….
Мы рассмотрели малую часть генераторов с постоянными магнитами, которые уже широко известны. Развитие этого направления экспериментальных проектов идет во всем мире

вівторок, 3 серпня 2021 р.

Универсальный генератор-двигатель Баялиева WO2021025547A1

 WO2021025547A1 

Абстрактный

Изобретение относится к электрическим машинам, в частности, к генераторам- двигателям как линейным, так и вращающимся. 

Классификация

Синхронные двигатели или генераторы
УНИВЕРСАЛЬНЫЙ ГЕНЕРАТОР-ДВИГАТЕЛЬ БАЯЛИЕВА


Изобретение относится к электрическим машинам, в частности, к генераторам- двигателям как линейным, так и вращающимся.
Линейные генераторы-двигатели, повторяют по принципу своего действия соответствующие двигатели вращательного движения.
Принципы действия этих устройств аналогичны как показано на Фиг.1, Данные устройства являются обратимыми машинами и могут работать как в генераторном, так и в двигательном режимах.
Универсальный г енератор-двигатель Бандиева может быть как линейными, так и вращающимися, и отличается друг от друга только видом траектории движения подвижного магнитоировода.
Возвратно-поступательное движение подвижного магнитоировода (ротора).
Представление об устройстве линейного генератора-двигателя можно получить, если мысленно разрезать, как показано на Фиг 1, статор (1) и ротор (4) с обмотками (2) и (3) обычного асинхронного двигателя вдоль оси по образующей и развернуть в плоскость
Образовавшаяся «плоская» конструкция представляет собой принципиальную схему линейного двигателя, Если теперь обмотки 2 статора такого двигателя подключить к сети переменного тока, то образуется магнитное поле, ось которого будет перемещаться вдоль воздушного зазора со скоростью V, пропорциональной частоте питающего напряжения f
Известные линейные генераторы-двигатели в основном имеют два типа взаимного расположения магнитов и катушек .
На Фи г.2 а) показано устройство, состоящее из неподвижного корпуса (5) (ярмо) в котором закреплены постоянные магниты (6), Внутри корпуса размещается подвижный шток, на котором закреплены катушки (7) с электрическими обмотками. Шток установлен в корпусе в подшипниках скольжения (на фигуре не показан) и имеет возможность возвратно- поступательного движения слева на право и наоборот. При перемещении штока в обмотках наводится ЗДС, пропорциональная скорости изменения амплитуды его перемещения VA X Перемещение приводит к изменению магнитного потока Ф на величину А Ф Так как обмотки будут поочерёдно (то есть не одновременно) входить в области действия магнитов разной направленности, то в данной конструкции функция изменения магнитного потока Ф от величины перемещения будет выглядеть следующим образом.
А Ф - f (D X) Очевидным недостатком конструкции является необходимость использования скользящих контактов (на фигуре не показаны) для съёма электроэнергии с катушек, расположенных на двигающемся штоке
На Фиг.2 б) показано аналогичное устройство, но с обратным расположением магнитов и катушек. Функия изменения магнитного поля будет аналогичной. Для катушки, находящейся в переменном магнитном поле, закон Фарадея можно записать следующим образом:
Е АФ/ At , где
Е электродвижущая сила действующая вдоль произвольно выбранного контура, Ф . магнитный поток через поверхность, ограниченную этим контуром, t . время изменения магнитного потока.
Поочерёдное, изменение магнитного потока в традиционных конструкциях означает, что сначала в обмотке изменяется (возрастает или уменьшается) магнитное поле одной направленности, а потом противоположной направленности. Это приводит к медленному изменению магнитного потока внутри обмотки и является основным недостатко использующихся в настоящее время конструкций. Вторым недостатком является большое количество магнитов и обмоток, что приводит к удорожанию действующих конструкций.Третьим недостатком является то, что не все магниты и обмотки работают одновременно в течении всего цикла возвратнопоступательного движения. На Фиг. 2 видно, что часть магнитов ( 2 штуки) или обмоток ( 2 штуки) не всегда взаимодействуют друг с другом.Задачей заявляемого изобретения является повышение генерируемой ЭДС, минимизация количества используемых магнитов и обмоток и их максимальное использование во время всего цикла генерации.
Для этих целей используем такое конструктивное расположение магнита и обмоток в отдельном базовом элементе на неподвижном магнитопроводе, чтобы создать в обмотках противоположное изменение магнитных потоков. Базовый элемент состоит из одного машите и двух обмоток, как будет показано ниже по описанию.
На Фиг. 3 а) показана конструкция, лишённая вышеуказанных недостатков традиционных линейных генераторов. В конструкции используется базовый элемент ( 14), включающий в себя неподвижный магнитопровод (8), имеющий среднюю точку (9) с установленным на ней магнитом (10). По краям неподвижного магнитопровода расположены 2 обмотки (1 1 ), Подвижный магнитопровод (12) имеет возможность возвратно-поступательного движения (направление движения поз.13) на подшипниках качения ( на фигуре не показаны)· Направление магнитных полей проходящих через левую и правую обмотку показано синими стрелками.
Как показано на ФигЗ а), при расположении середины подвижного магнитопровода (12) против средней точки (9), линии магнитного ноля, проходящие через среднюю точку (9), в которой установлен магнит (10), равномерно распределены но двум обмоткам (11), противонаправлены и равны по величине.
При смещении подвижного магнитопровода (12) влево или вправо на D X как показано на Фиг 3 б) и в), происходит изменение величины магнитного сопротивления в зазорах между обмотками (11) и подвижным магнитопроводом (12). Изменение магнитного сопротивления в зазорах приводит к противонаправленному изменению величин магнитных потоков в правой и левой обмотке н величину :
А Ф - f (Л X)
Обмотки соединены последовательно и в результате образуют единую обмотку.
Совокупное изменение магнитного потока в единой обмотке составит : D Ф= f (D X) ~ (~ f (А X)) ~ 2 f (D X), то есть вырастет в 2 раза по сравнению с имеющим иея аиал о гам и. В отличии от имеющихся аналогов подвижный магнитопровод (ротор) не генерирует никакою магнитного поля, а является пассивным элементом как ферримагнитиый сердечник в соленоиде. Он переключает магнитные линии, проходящие через магнит и обмотки, уменьшая магнитное сопротивление между магнитом и правой обмоткой или магнитом и левой обмоткой
На Фиг. 4 показано изменение магнитных потоков в двух обмотках соединенных последовательно в устройстве, изображённом на Фиг. 3. Пунктирными стрелками показано направление магнитного поля индуцируемого возникающей при этом ЭДС, которое всегда направлено против изменения магнитного потока.
Фиг.4 а) - подвижный магнитопровод находится в нейтральном положении.
Фиг.4 б) - подвижный магнитопровод двигается вправо.
Фиг.4 в) - подвижный магнитопровод двигается влево.
При больших величинах смещения, используется подвижный магнитопровод с выступами (зубцами), позволяющий обеспечить изменение магнитных потоков при любой величине смещения. Эта конструкция изображена на Фиг,5 а), б) и в).
В случае использования кольцевого магнита и двух обмоток надо учесть, что его магнитные линии расположены, как изображено на Фиг.6.
Базовый элемент будет выглядеть как на Фиг.7 а) и включает в себя кольцевой магнит (15), помещённый в середину неподвижного магиитопровода (16) который изготовлен в виде двух колец, помещённых в разрезанный цилиндр с технологическим зазором A Y , подвижный магнитопровод (17), наружную обмотку (18) и внутреннюю обмотку (19). Наружная обмотка размещена с наружной части кольцевого магнита, Внутренняя обмотка находится между вну тренней поверхностью магнита и подвижным магнитопроводом (17).
Принцип действия данной конструкции аналогичен устройству, изображённому на Фиг. 5. Передвижение подвижного магиитопровода изменяет величину магнитных зазоров А X и соответственно плотность линий магнитного поля снаружи и внутри кольцевого магнита. При этом часть линий магнитного ноля переходит снаружи кольцевого магнита внутрь и обратно. Технологический зазор A Y предназначен для регулирования равномерности плотности линий магнитного поляснаружи и внутри кольцевого магнита и выставляется заводо изготовителем. При уменьшении зазора линии перераспределяются внутрь кольцевого магнита, при увеличении наружу. Регулирование равномерности плотности линий магнитного поля можно осуществлять и за счёт изменения толщины стенки цилиндра неподвижного машитопровода Ah в процессе изготовления, изменяя его магнитную проводимость как показано на Фиг.7 б). При увеличении толщины стенки Ah линии магнитного поля перераспределяются наружу кольцевого магнита, при уменьшении внутрь. Наружная и внутренняя обмотки соединены последовательно. На Фиг.7 в) и г) показано изменение плотности линий магнитных потоков при перемещении подвижного мапштоировода. Для усиления возбуждающего магнитного поля в зоне расположения постоянного магнита можно поместить обмотку возбуждения (20) как показано на Фиг. 8. а) и б) Обмотка возбуждения (20) выделена красным цветом и запитываются с единой генерирующей обмотки через выпрямитель. Например, через управляемый выпрямитель на тиристорах, стандартная схема ко торого изображена на Фиг.9. При использовании обмотки подмагничивания можно вообще отказаться от применения постоянного магнита, если в зоне его размещения использовать магнитотвердый материал из углеродистой стали (21), сохраняющей остаточную намагниченность как показано на Фиг 10. Это позволит начать генерацию электроэнергии на начальном этапе движения с дальнейшим усилением возбуждающего магнитного поля за счёт обмоток подмагничивания. С помощью блока системы управления (СУ) можно изменять угол управления и время начала работы каждого тиристора, а следовательно и среднее выпрямленное напряжение и ток. Описание работы управляемого выпрямителя на тиристорах изложено на сайте: https : //stij d re f. com/311612/tehmka/upravlyaemye vypminiteii tinstorah Универсальный генератор-двигатель Банлиева является обратимой машиной и, так же как и его аналоги, может работать в двигательном режиме. В двигательном режиме на генерирующие и подмагничивающие обмотки надо подать переменное напряжение через генератор с блоком управления, изображённый на Фиг. 11 а). Диаграммы переменного питающего трехфазного напряжения показаны на Фиг. 11 б).Переменное магнитное поле создает усилие, которое приводит в движение подвижный маг нито про вод. Направление движения будет зависеть от сдвига фаз подаваемого напряжения. Скорость движения от частоты напряжения. Описание работы линейных двигателей подробно изложено на сайте: http://lcg.co. ua/iiifo/dektncheskie-inasiiiny/lineynyc--elektro vigateli.Iitml б
Для увеличения мощности универсального генератора-двигателя Баялиева как в генераторном, гак и в двигательном режиме можно использовать не один, а несколько (два и более) базовых элемента при одном и том же подвижном магиитопроводе, как это показано на Фиг.12. Базовые элементы можно располагать как с одной гак и с двух сторон подвижного мапштонровода если разместить дополнительные зубцы на его обратной стороне.
2.Врашающа тельное движение подвижного магнитонровода (ротора).
На Фиг.13 показана функциональная схема традиционно используемого двухполюсного трехфазного синхронного генератора. Частота тока ί выражается следующим соотношением: f: N/60, где N — число оборотов ротора в минуту.
Для машин, имеющих р пар полюсов, частота тока при п/60 об/сек будет в р раз больше, чем для двухполюсной машины, т е. f-pN/60
Отсюда формула для определения частоты вращения ротора будет иметь следующий вид:
N~60f/p
Для снижения частоты вращения генератора, при неизменной частоте тока f , например в ветроустановках, приходится использовать многополюсные машины, что приводит к их удорожанию, так как приходится использовать от 15 до 90 пар полюсов.
В этой конструкции, так же как и в традиционных линейных генераторах обмотки будут поочередно (то есть не одновременно) входить в области действия магнитов разной направленности и функция изменения магнитного потока Ф от величины перемещения будет выглядеть следующим образом.
А Ф - f (А b ) ,где р - угол поворота ротора.
На Фиг.14 показан многополюсный генератор используемый в современных ветроустановках. На кольцевом роторе расположены обмотки независимого возбуждения, формирующие магнитные полюсы, а на статоре ( справа) - обмотка статора.
Задачей заявляемого изобретения является повышение генерируемой ЭДС, снижение частоты вращения генератора, минимизация количества используемых магнитов и обмоток и их масимальное использование во время всего цикла генерации.
На Фиг 15 а) показано устройство е использованием базового элемента в виде двух обмоток и одного магнита. От универсального генератора-двигателя Каялиева изображённого на Фиг 5 оно отличается только тем, что подвижный магнитопровод (ротор) изготовлен в виде кольца и имеет возможность вращения вокруг базового элемента на подшипниках. Принцип действия универсального генератора- двигателя Баялнева с вращающимся подвижным магиитопроводом аналогичен для всех примеров описанных в разделе универсальный генератор-двигатель Баялнева с возвратно-поступательным движением подвижного магиитопровода, за исключением траектории движения подвижного магиитопровода. Функция изменения магнитного потока Ф от угла поворота будет выглядеть следующим образом :
А Ф - 2 f (А b),
Скорость изменения магнитного потока будет в два раза больше че у имеющихся в настоящее время аналогов.
Для увеличения мощности и более равномерного распределения нагрузки можно также использовать два и более базовых элемента при одном и том же подвижном магнитопроводе (роторе) как показано на Фиг.15 б).Количество фаз напряжения будет зависеть от количества базовых элементов. Базовые элементы также могут быть расположены как внутри, так и снаружи подвижного магиитоировода при соответствующем расположении зубцов.
Частота генерации будет зависеть от количества выступов (зубцов) на подвижном элемен те по формуле ; f ~ N*N:iy6 /60, где
N - число оборотов ротора в мину ту; Мзуб - количество зубцов на роторе.
Из формулы видно, что для увеличения частоты генерации достаточно увеличить количество зубцов в подвижном магиитопроводе, а значит на такую же величину можно снизить скорость вращения ротора, что очень важно для тихоходных генераторов, используемых в ветровых и гидро электростанциях. В частности, частота вращения вала устройства изображённого на Фиг. 15 б) при частоте генерации 50 Гц буде т равна :
N— dOί/Ntnd- 60*50/20- 3000/20 150 оборотов в минуту
Универсальный генератор-двигатель Баялиева с вращательным движением подвижного магнитоп- овода является обратимой машиной и, так же как и его аналоги, может работать в двигательном режиме. При использовании трех базовых элементов получим трехфазный синхронный двигатель, в котором можно использовать стандартный набор управления вращением.